Supabase CLI
Interact with Supabase projects: queries, CRUD, vector search, and table management.
Setup
# Required
export SUPABASE_URL="https://yourproject.supabase.co"
export SUPABASE_SERVICE_KEY="eyJhbGciOiJIUzI1NiIs..."
# Optional: for management API
export SUPABASE_ACCESS_TOKEN="sbp_xxxxx"
Quick Commands
# SQL query
{baseDir}/scripts/supabase.sh query "SELECT * FROM users LIMIT 5"
# Insert data
{baseDir}/scripts/supabase.sh insert users '{"name": "John", "email": "john@example.com"}'
# Select with filters
{baseDir}/scripts/supabase.sh select users --eq "status:active" --limit 10
# Update
{baseDir}/scripts/supabase.sh update users '{"status": "inactive"}' --eq "id:123"
# Delete
{baseDir}/scripts/supabase.sh delete users --eq "id:123"
# Vector similarity search
{baseDir}/scripts/supabase.sh vector-search documents "search query" --match-fn match_documents --limit 5
# List tables
{baseDir}/scripts/supabase.sh tables
# Describe table
{baseDir}/scripts/supabase.sh describe users
Commands Reference
query - Run raw SQL
{baseDir}/scripts/supabase.sh query "<SQL>"
# Examples
{baseDir}/scripts/supabase.sh query "SELECT COUNT(*) FROM users"
{baseDir}/scripts/supabase.sh query "CREATE TABLE items (id serial primary key, name text)"
{baseDir}/scripts/supabase.sh query "SELECT * FROM users WHERE created_at > '2024-01-01'"
select - Query table with filters
{baseDir}/scripts/supabase.sh select <table> [options]
Options:
--columns <cols> Comma-separated columns (default: *)
--eq <col:val> Equal filter (can use multiple)
--neq <col:val> Not equal filter
--gt <col:val> Greater than
--lt <col:val> Less than
--like <col:val> Pattern match (use % for wildcard)
--limit <n> Limit results
--offset <n> Offset results
--order <col> Order by column
--desc Descending order
# Examples
{baseDir}/scripts/supabase.sh select users --eq "status:active" --limit 10
{baseDir}/scripts/supabase.sh select posts --columns "id,title,created_at" --order created_at --desc
{baseDir}/scripts/supabase.sh select products --gt "price:100" --lt "price:500"
insert - Insert row(s)
{baseDir}/scripts/supabase.sh insert <table> '<json>'
# Single row
{baseDir}/scripts/supabase.sh insert users '{"name": "Alice", "email": "alice@test.com"}'
# Multiple rows
{baseDir}/scripts/supabase.sh insert users '[{"name": "Bob"}, {"name": "Carol"}]'
update - Update rows
{baseDir}/scripts/supabase.sh update <table> '<json>' --eq <col:val>
# Example
{baseDir}/scripts/supabase.sh update users '{"status": "inactive"}' --eq "id:123"
{baseDir}/scripts/supabase.sh update posts '{"published": true}' --eq "author_id:5"
upsert - Insert or update
{baseDir}/scripts/supabase.sh upsert <table> '<json>'
# Example (requires unique constraint)
{baseDir}/scripts/supabase.sh upsert users '{"id": 1, "name": "Updated Name"}'
delete - Delete rows
{baseDir}/scripts/supabase.sh delete <table> --eq <col:val>
# Example
{baseDir}/scripts/supabase.sh delete sessions --lt "expires_at:2024-01-01"
vector-search - Similarity search with pgvector
{baseDir}/scripts/supabase.sh vector-search <table> "<query>" [options]
Options:
--match-fn <name> RPC function name (default: match_<table>)
--limit <n> Number of results (default: 5)
--threshold <n> Similarity threshold 0-1 (default: 0.5)
--embedding-model <m> Model for query embedding (default: uses OpenAI)
# Example
{baseDir}/scripts/supabase.sh vector-search documents "How to set up authentication" --limit 10
# Requires a match function like:
# CREATE FUNCTION match_documents(query_embedding vector(1536), match_threshold float, match_count int)
tables - List all tables
{baseDir}/scripts/supabase.sh tables
describe - Show table schema
{baseDir}/scripts/supabase.sh describe <table>
rpc - Call stored procedure
{baseDir}/scripts/supabase.sh rpc <function_name> '<json_params>'
# Example
{baseDir}/scripts/supabase.sh rpc get_user_stats '{"user_id": 123}'
Vector Search Setup
1. Enable pgvector extension
CREATE EXTENSION IF NOT EXISTS vector;
2. Create table with embedding column
CREATE TABLE documents (
id bigserial PRIMARY KEY,
content text,
metadata jsonb,
embedding vector(1536)
);
3. Create similarity search function
CREATE OR REPLACE FUNCTION match_documents(
query_embedding vector(1536),
match_threshold float DEFAULT 0.5,
match_count int DEFAULT 5
)
RETURNS TABLE (
id bigint,
content text,
metadata jsonb,
similarity float
)
LANGUAGE plpgsql
AS $$
BEGIN
RETURN QUERY
SELECT
documents.id,
documents.content,
documents.metadata,
1 - (documents.embedding <=> query_embedding) AS similarity
FROM documents
WHERE 1 - (documents.embedding <=> query_embedding) > match_threshold
ORDER BY documents.embedding <=> query_embedding
LIMIT match_count;
END;
$$;
4. Create index for performance
CREATE INDEX ON documents
USING ivfflat (embedding vector_cosine_ops)
WITH (lists = 100);
Environment Variables
| Variable | Required | Description |
|---|---|---|
| SUPABASE_URL | Yes | Project URL (https://xxx.supabase.co) |
| SUPABASE_SERVICE_KEY | Yes | Service role key (full access) |
| SUPABASE_ANON_KEY | No | Anon key (restricted access) |
| SUPABASE_ACCESS_TOKEN | No | Management API token |
| OPENAI_API_KEY | No | For generating embeddings |
Notes
- Service role key bypasses RLS (Row Level Security)
- Use anon key for client-side/restricted access
- Vector search requires pgvector extension
- Embeddings default to OpenAI text-embedding-ada-002 (1536 dimensions)